

Pathological response guides adjuvant 5-fluorouracil, leucovorin, oxaliplatin, and docetaxel (FLOT) chemotherapy in surgically resected gastro-oesophageal cancer (SPACE-FLOT): international cohort study

SPACE-FLOT Investigators

*Correspondence to: David S. Liu, Division of Cancer Surgery, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, 3000, Australia; Upper Gastrointestinal Surgery Unit, Division of Surgery, Anaesthesia and Procedural Medicine, Austin Hospital, 145 Studley Road, Heidelberg, Victoria, 3084, Australia (e-mail: liu.davidsh@gmail.com; X@Dr.DavidSLiu)

The SPACE-FLOT Investigators are co-authors of this study and are listed under the heading Collaborators (see the supplementary material for contributions).

Presented to the European Society for Medical Oncology (ESMO) Congress, Barcelona, Spain, September 2024 and the International Society for Diseases of the Esophagus (ISDE) World Congress for Esophageal Diseases, Edinburgh, UK, September 2024.

Abstract

Background: Many patients with locally advanced gastro-oesophageal cancers are unable to complete adjuvant 5-fluorouracil, leucovorin, oxaliplatin, and docetaxel (FLOT) chemotherapy, raising questions about its therapeutic utility. The aim of this study was to examine whether pathological response to neoadjuvant FLOT can guide its adjuvant use.

Methods: Patients with non-metastatic gastro-oesophageal adenocarcinoma who received neoadjuvant FLOT and underwent surgery from 1 January 2017 to 1 January 2022 from 43 hospitals across 12 countries were analysed. Pathological response was assessed using tumour regression grading systems, trichotomized into minimal responders (MR; worst category), complete responders (CR; pCR), and partial responders (PR; between MR and CR). Survival outcomes of patients who did and did not receive adjuvant FLOT were compared using Kaplan–Meier, Cox regression, propensity score matched, and sensitivity analysis.

Results: A total of 1887 patients (459 MR, 221 CR, and 1207 PR) were evaluated. The median follow-up was 25.5 (interquartile range 15.0–39.1) months. In the MR group, there was no difference in disease-free survival (DFS; HR 1.03 (95% c.i. 0.78 to 1.36), P = 0.836) between those who did and did not receive adjuvant FLOT. Whilst there was a difference in non-adjusted OS, this became statistically non-significant after adjusting for baseline characteristics (HR 0.96 (95% c.i. 0.70 to 1.30), P = 0.801). In the CR group, there was no difference in DFS (HR 0.88 (95% c.i. 0.41 to 1.85), P = 0.724) or OS (HR 0.69 (95% c.i. 0.31 to 1.54), P = 0.343) between those who did and did not receive adjuvant FLOT. In the PR group, adjuvant FLOT conferred a significant DFS (HR 0.68 (95% c.i. 0.55 to 0.86), P < 0.001) and OS (HR 0.55 (95% c.i. 0.44 to 0.69), P < 0.001) benefit.

Conclusion: Pathological response to neoadjuvant FLOT may guide the use of adjuvant FLOT, enabling personalized approaches to treatment.

Lay summary

Chemotherapy for cancers of the stomach and oesophagus is associated with significant side effects. Being able to predict which patients may benefit or not from further chemotherapy after surgery may optimize its use and reduce harm. In this international study of real-world patients with stomach and oesophageal cancer undergoing surgery and chemotherapy, the authors found that only patients with a partial response to pre-surgery chemotherapy benefited from further chemotherapy after surgery. Patients with a minimal response or no response to pre-surgery chemotherapy, or those whose cancer had been eradicated by pre-surgery chemotherapy, did not benefit from further chemotherapy after surgery. This study suggests that a tumour's response to pre-surgery chemotherapy may guide the use of chemotherapy after surgery.

Introduction

Perioperative chemotherapy significantly improves survival for locally advanced gastro-oesophageal adenocarcinoma^{1–3}. As a result of the FLOT4-AIO trial², a regimen of four cycles of 5-fluorouracil, leucovorin, oxaliplatin, and docetaxel (FLOT) delivered both before and after surgery is the standard of care at many institutions

worldwide and is endorsed by international guidelines^{4,5}. However, this regimen is difficult to tolerate, as evidenced by 30–50% of patients not completing all treatment cycles^{2,6,7}.

Tumour regression grading (TRG) histologically examines the resected specimen for response to preoperative chemotherapy, providing an opportunity to predict benefit from adjuvant

therapy, particularly when identical chemotherapy regimens are applied. This concept is particularly relevant to perioperative FLOT treatment, as 20-30% of resected cancers demonstrate minimal/no response to neoadjuvant FLOT, whilst 10-20% of cancers exhibit complete pathological regression⁸. This questions the utility of adjuvant FLOT for all patients regardless of tumour response. Hence, for cancers with no response to neoadjuvant FLOT, further postoperative FLOT is questionable. Conversely, for cancers with a complete response, the need for further adjuvant FLOT is debatable. However, to date, the role of TRG as a therapeutic biomarker to inform the use of adjuvant FLOT has not been evaluated.

To address this clinical conundrum, the authors established SPACE-FLOT (Survival and PAtterns of Care in the Era of FLOT-based chemotherapy for gastro-oesophageal cancers), an international collaboration of 43 gastro-oesophageal cancer centres. The aim of this study was to examine whether pathological response to neoadjuvant FLOT can guide its adjuvant use.

Methods

Study design

Analysis of prospectively maintained databases of patient-level data was performed for consecutive patients who received neoadjuvant FLOT chemotherapy and underwent radical resection for gastro-oesophageal adenocarcinoma from 1 January 2017 to 1 January 2022. This study involved 43 hospitals in 12 countries (Table S1). Complete eligibility criteria are listed in Fig. 1. Patients who required dose reductions to their FLOT regimen were included as study participants, but patients who changed regimens and/or received non-FLOT regimens were excluded. This study was registered with the Australian New Zealand Clinical Trials Registry (ACTRN12622000180718) and was approved by the Peter MacCallum Cancer Centre Human Research Ethics Committee (HREC/76492/PMCC) and all sites.

Data collection and quality assurance

Data were collated through an online research electronic data capture (REDCap) database (tested and validated by the Peter MacCallum Data Systems, Research Computing Facility). Training sessions for data collectors, in-program prompting, and real-time data entry support were employed to minimize inter-observer variations. Data cleaning was conducted independently by two investigators. Random auditing of 10% of data fields from all sites, by cross-checking with patient medical records, demonstrated a mean(s.d.) accuracy rate of 97.8(2.3)%.

Study outcomes

The primary endpoint was 2-year disease-free survival (DFS). Secondary endpoints were overall survival (OS), sites of treatment failure, completion rates of neoadjuvant and adjuvant therapy, and reasons for not starting and/or completing perioperative therapy. DFS was calculated from the date of surgery to the date of disease recurrence, as determined by clinical, endoscopic, and/or radiological examinations. OS was calculated from the date of surgery to the date of death from any cause. Those alive at study termination were censored at the time of last contact. All tumours were staged using the Eighth Edition AJCC Cancer Staging Manual⁹. Other study definitions can be found in Methods S1.

TRG

Seven well-described TRG systems were identified from all study sites (Table S2). All TRG systems were trichotomized a priori by two gastrointestinal pathologists into minimal (worst TRG tier), complete (pCR), and partial (all TRG tiers in-between) responders. Their definitions are detailed in Table S2. This pragmatic method of unifying all TRG systems was adopted after considering the regulatory, logistic, economic, and resourcing challenges of centralizing pathology review and/or retraining pathologists to conform to a new TRG system. This approach also allows immediate translatability of this study's findings into clinical practice.

Power calculation

Methods S2 provides extended details on power calculations. Based on FLOT completion rates, survival data, and adjuvant chemotherapy effect sizes from the FLOT4-AIO, MAGIC, and CLASSIC trials^{1,2,8,10}, we powered for a 2-year 15% DFS (two-sided $\alpha = 0.05$, 80% power) difference between groups, assuming a 40% non-commencement rate of adjuvant FLOT. The sample sizes required for the minimally, partially, and completely responsive cohorts were 370 (adjuvant FLOT versus no adjuvant treatment, 230 versus 140, 2-year DFS: 55% versus 40%), 350 (adjuvant FLOT versus no adjuvant treatment, 220 versus 130, 2-year DFS: 70% versus 55%), and 210 (adjuvant FLOT versus no adjuvant treatment, 130 versus 80, 2-year DFS: 90% versus 75%) respectively.

Statistical analysis

Each tumour-response cohort was analysed as an independent entity. Baseline characteristics between 'adjuvant FLOT' and 'no adjuvant treatment' cohorts were compared using Fisher's exact test and Student's t test. For non-parametric data, the Mann-Whitney U test was applied. Where comparisons involved more than two categorical variables, the chi-squared test was used. Unadjusted DFS and OS were analysed using the log rank test. Multivariate Cox proportional hazards models were fitted, adjusting for baseline characteristics that were significantly different between study groups on univariate analysis. The proportional hazards assumption was tested for all models. Survival differences were orthogonally validated using 1:1 propensity score matching (Methods S3 and Figs S1-S3) and sensitivity analysis. Two-tailed P values <0.050 and HRs with 95% confidence intervals that did not cross one were considered statistically significant. Statistical analyses were performed using Prism version 10 (GraphPad Software, San Diego, CA, USA) and R version 4.1.0 (R Foundation for Statistical Computing, Vienna, Austria).

Results

In total, 1887 patients were evaluated. Of these, 459 (24.3%), 221 (11.7%), and 1207 (64.0%) had a minimal, complete, and partial pathological response to neoadjuvant FLOT respectively (Fig. 1). Detailed study population characteristics are shown in Tables S3-S6. The mean(s.d.) age of patients was 63.0(10.4) years and 1416 (75.0%) were male. A total of 1808 patients (95.8%) had locally advanced (cT ≥2 and/or cN1+) cancer and there were 265 (14.0%), 955 (50.6%), and 667 (35.4%) with tumours located in the distal oesophagus, gastro-oesophageal junction, and stomach respectively. The median follow-up duration was 25.5 (interquartile range (i.q.r.) 15.0–39.1) months post-surgery.

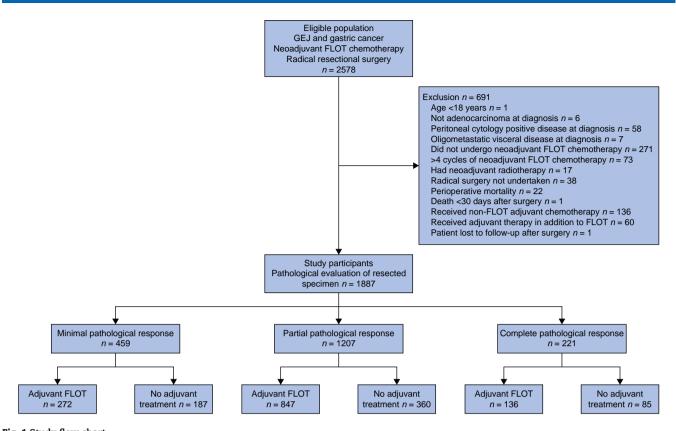


Fig. 1 Study flow chart GEJ, Gastroesophageal junction; FLOT, 5-fluorouracil, leucovorin, oxaliplatin, and docetaxel.

Perioperative FLOT treatment

Overall, 1564 patients (82.9%) completed all four neoadjuvant FLOT cycles. The most common reason for early cessation of neoadjuvant therapy (Table S7) was drug toxicity (41.8%). In total, 632 patients (33.5%) did not receive any adjuvant treatment. This was largely attributed to clinician decision (44.9%) and patient refusal (36.1%) based on tolerance to therapy, postoperative recovery, neoadiuvant COVID-19-related concerns (Table S8). Of the 1255 patients (66.5%) who received adjuvant FLOT, 951 (75.8%) completed all adjuvant treatment. The most common reason for not completing four postoperative cycles (Table S9) was drug toxicity (43.8%).

Minimal responders to neoadjuvant FLOT

Of the 459 patients who had a minimal response (worst TRG tier) to neoadjuvant FLOT, 187 (40.7%) did not receive any adjuvant therapy. In the 272 (59.3%) patients who received FLOT after surgery, 215 (79.0%) completed all four adjuvant cycles. Table 1 and Table S10 compare the characteristics within this TRG cohort. Patients who received adjuvant FLOT were younger, had a better Charlson co-morbidity index and ECOG status, and completed more neoadjuvant FLOT cycles than those who did not receive adjuvant FLOT. Additional differences in tumour location, resection type, surgical complications, and treatment of recurrent disease are detailed in Table 1. Importantly, the prognostic histopathological features were similar between the two groups. The 2-year DFS for patients who did and did not receive adjuvant FLOT was 55.2% and 55.6% respectively. There was no difference in unadjusted DFS (Fig. S4a; HR 1.03 (95% c.i. 0.78 to 1.36), P = 0.836) between the two groups. This was validated using Cox regression analysis (Fig. 2a; HR 1.21 (95% c.i. 0.89 to 1.64), P = 0.218) and propensity score matched analysis (Fig. S4b; HR 1.07 (95% c.i. 0.81 to 1.42), P = 0.618), having adjusted for (using Cox regression analysis) and adequately matched on (using propensity score matched analysis) significantly different characteristics found on univariate comparison (Table 1). Whilst there was a difference in unadjusted OS (Fig. S4c; HR 0.73 (95% c.i. 0.55 to 0.97), P = 0.027) between the two groups, this became non-significant after adjusting for (Fig. 2b; HR 0.96 (95% c.i. 0.70 to 1.30), P = 0.801) and matching (Fig. S4d; HR 0.84 (95% c.i. 0.63 to 1.10), P = 0.202) the same patient characteristics. This demonstrates that adjuvant FLOT does not improve DFS and OS in patients with a minimal response to neoadjuvant FLOT. There were no differences in sites of treatment failure between the two groups (Fig. S5).

Complete responders to neoadjuvant FLOT

Of the 221 patients who achieved a complete response (best TRG tier) to neoadjuvant FLOT, 85 (38.5%) did not receive any adjuvant therapy. In the 136 patients (61.5%) who received FLOT after surgery, 88 (64.7%) completed all adjuvant cycles. Patients who received adjuvant FLOT were younger, had a better ASA grade, and completed more neoadjuvant FLOT cycles than those who did not receive adjuvant FLOT. Additional differences in tumour location and surgical complications are detailed in Table 2 and Table S11. The 2-year DFS for patients who did and

Table 1 Patient, tumour, treatment, and perioperative characteristics for the minimally responsive cohort

Characteristics	Adjuvant FLOT ($n = 272$)	No adjuvant treatment ($n = 187$)	P
Demographics			
Age (years), mean(s.d.)	61.1(10.4)	64.6(9.8)	<0.001*
Sex Male	194 (71.3)	134 (71.7)	1.000
Female	78 (28.7)	53 (28.3)	
BMI (kg/m²), mean(s.d.)	26.6(4.6)	26.8(5.2)	0.607
Charlson co-morbidity index			<0.001*
Index score, median (i.q.r.)	2 (1–3)	3 (2–4)	
Predicted 10-year survival (%), mean(s.d.)	80.4(23.1)	73.6(25.9)	0.353
Smoking status at time of surgery Active	42 (15.4)	22 (11.7)	0.253
Former	103 (37.9)	82 (43.9)	
Never	94 (34.6)	55 (29.4)	
Unknown	33 (12.1)	28 (15.0)	
ASA grade at time of surgery, median (i.q.r.)	II (II–III)	II (II–III)	0.178
ECOG status at time of surgery, median (i.q.r.)	0 (0–1)	0 (0–1)	0.046*
Neoadjuvant treatment Completed four cycles of FLOT	239 (87.9)	125 (66.8)	<0.001*
FLOT cycles completed (n), median (i.q.r.)	4 (4–4)	4 (3–4)	0.007*
Clinical tumour features	()	(- /	
cT category			0.581
cT1	11 (4.1)	7 (3.8)	
cT2–3 cT4	228 (83.8)	151 (80.7)	
cN+ status	33 (12.1) 146 (53.7)	29 (15.5) 93 (49.7)	0.447
Anatomical location of tumour	110 (55.7)	93 (15.7)	0.010*
Distal oesophageal	20 (7.4)	25 (13.4)	
Gastro-oesophageal junction	109 (40.0)	88 (47.0)	
Stomach	143 (52.6)	74 (39.6)	
Surgery and perioperative details			0.140
Surgical approach Open	153 (56.2)	118 (63.1)	0.149
Minimally invasive	119 (43.8)	69 (36.9)	
Type of resection	113 (13.0)	03 (30.3)	0.003*
Oesophagectomy	102 (37.5)	91 (48.7)	
Total gastrectomy	87 (32.0)	64 (34.2)	
Subtotal gastrectomy	83 (30.5)	32 (17.1)	0.501
Duration of surgery (min), mean(s.d.) Surgical complications	350.6(132.9)	358.3(126.4)	0.581 <0.001*
None	140 (51.4)	54 (28.9)	Q0.001
Minor (Clavien-Dindo grades I-II)	85 (31.3)	59 (31.6)	
Major (Clavien–Dindo grades III–IV)	47 (17.3)	74 (39.5)	
Tumour histology			
Histological diagnosis Adenocarcinoma	260 (08.0)	105 (00.0)	0.448
Adenocarcinoma with squamous differentiation	269 (98.9) 3 (1.1)	185 (99.0) 1 (0.5)	
Undifferentiated carcinoma	0 (0.0)	1 (0.5)	
Lauren classification	(() ()	(***)	0.129
Intestinal	46 (16.9)	41 (21.9)	
Diffuse	79 (29.0)	37 (19.8)	
Mixed Indeterminate	21 (7.8)	15 (8.0)	
Tumour grade	126 (46.3)	94 (50.3)	0.523
Well differentiated	18 (6.6)	12 (6.4)	0.323
Moderately differentiated	54 (19.9)	47 (25.1)	
Poorly differentiated	165 (60.7)	99 (53.0)	
Undifferentiated	5 (1.8)	4 (2.1)	
Indeterminate	30 (11.0)	25 (13.4)	0.151
Lymphovascular invasion Perineural invasion	164 (60.3) 142 (52.5)	100 (53.5) 89 (47.6)	0.131
Resection margin	112 (32.3)	05 (17.0)	0.344
RO	225 (82.7)	143 (76.5)	
R1	41 (15.1)	41 (21.9)	
R2	6 (2.2)	3 (1.6)	2
ypT status	E (1.0\	0 (4 0)	0.895
ypT1a ypT1b	5 (1.8) 9 (3.3)	9 (4.8) 10 (5.4)	
ypT2	34 (12.5)	15 (8.0)	
ypT3	159 (58.5)	96 (51.4)	
ypT4a	59 (21.7)	47 (25.1)	
ypT4b	6 (2.2)	10 (5.3)	

Table 1 (continued)

Characteristics	Adjuvant FLOT $(n = 272)$	No adjuvant treatment ($n = 187$)	P
ypN status			0.602
ypN0	82 (30.2)	57 (30.5)	
ypN1	52 (19.1)	27 (14.4)	
ypN2	58 (21.3)	45 (24.1)	
ypN3	80 (29.4)	58 (31.0)	
Total nodal harvest (n), median (i.q.r.)	29 (20–42)	29 (23–39)	0.767
Recurrence details	,	,	
ECOG status at recurrence, median (i.g.r.)	1 (0-2)	1 (1–2)	0.034*
First-line treatment, n of n (%)	80 of 131 (61.1)	37 of 79 (46.8)	0.047*
Second-line treatment, n of n (%)	25 of 131 (19.1)	10 of 79 (12.7)	0.226
Third-line treatment, n of n (%)	9 of 131 (6.9)	2 of 79 (2.5)	0.172

Values are n (%) unless otherwise indicated. *Statistically significant. FLOT, 5-fluorouracil, leucovorin, oxaliplatin, and docetaxel; i.q.r., interquartile range; ECOG, Eastern Cooperative Oncology Group.

did not receive adjuvant FLOT was 87.9% and 86.2% respectively. DFS was similar between these two groups based on unadjusted (Fig. S6a; HR 0.88 (95% c.i. 0.41 to 1.85), P = 0.724), Cox regression adjusted (Fig. 2c; HR 0.79 (95% c.i. 0.35 to 1.79), P = 0.575), and propensity score matched (Fig. S6b; HR 0.81 (95%) c.i. 0.39 to 1.70), P = 0.579) analysis. There were no differences in sites of treatment failure (Fig. S5). Similarly, OS was comparable between these two groups based on unadjusted (Fig. S6c; HR 0.69 (95% c.i. 0.31 to 1.54), P = 0.343), Cox regression adjusted (Fig. 2d; HR 0.69 (95% c.i. 0.29 to 1.68), P = 0.417), and propensity score matched (Fig. S6d; HR 0.97 (95% c.i. 0.44 to 2.14), P = 0.940) analysis.

Partial responders to neoadjuvant FLOT

Of the 1207 patients who had a partial response (any tier between best and worst TRG) to neoadjuvant FLOT, 360 (29.8%) did not receive any adjuvant therapy. In the 847 (70.2%) patients who received FLOT after surgery, 648 (76.5%) completed all adjuvant cycles. Patients who received adjuvant FLOT were younger, had a better ASA grade, Charlson co-morbidity index, and ECOG status, and completed more cycles of neoadjuvant FLOT. Additionally, prognostic histopathological features were similar between the two groups (Table 3 and Table S12). The 2-year DFS for patients who did and did not receive adjuvant FLOT was 74.5% and 61.9% respectively. In contrast to minimal and complete pathological responders, partial responders derived a significant DFS (Fig. S7a; HR 0.68 (95% c.i. 0.55 to 0.86), P < 0.001) benefit from adjuvant FLOT. Importantly, this benefit remained after adjusting for (Fig. 2e; HR 0.73 (95% c.i. 0.58 to 0.92), P = 0.007) and matching on (Fig. S7b; HR 0.72 (95% c.i. 0.58 to 0.88), P = 0.002) baseline differences (Table 3). Moreover, adjuvant FLOT significantly increased OS based on unadjusted (Fig. S7c; HR 0.55 (95% c.i. 0.44 to 0.69), P < 0.001), Cox regression adjusted (Fig. 2f; HR 0.63 (95% c.i. 0.50 to 0.79), P < 0.001), and propensity score matched (Fig. S7d; HR 0.66 (95% c.i. 0.54 to 0.82), P < 0.001) analysis. Compared with the adjuvant FLOT group, patients who did not receive adjuvant treatment had a significantly higher risk of peritoneal, nodal, bone, central nervous system, and chest wall recurrence (Fig. S5).

Sensitivity analysis

A sensitivity analysis was undertaken, examining subgroups of different TRG systems, different operative approaches, different tumour locations, and patients who completed all neoadjuvant/ adjuvant FLOT cycles. Irrespective of TRG system (5-tiered Mandard or 4-tiered TRG), surgical approach (gastrectomy or esophagectomy), or tumour location (distal oesophageal/ gastro-oesophageal junction or stomach), and for patients who completed all neoadjuvant/adjuvant FLOT cycles, only partial responders derived a significant therapeutic benefit from adjuvant FLOT (Fig. S8).

Finally, further analysis within the partially responsive group suggested that adjuvant FLOT improves DFS regardless of age, co-morbidities, performance status, completion (or not) of four adjuvant cycles, and the extent of lymphadenectomy (Fig. S9). Additionally, female sex, completion of neoadjuvant therapy, tumours with moderate to poor differentiation, lymphovascular invasion, perineural infiltration, advanced ypT category, positive ypN category, HER2 negativity, and proficient mismatch repair status correlated with relative therapeutic benefit from adjuvant FLOT in patients with a partially responsive tumour.

Discussion

In this international cohort study, it was demonstrated that pathological response to neoadjuvant FLOT predicts the efficacy of adjuvant FLOT. These findings can be used to personalize the perioperative management of patients with resected gastro-oesophageal adenocarcinoma.

Personalizing perioperative FLOT therapy is important for several reasons. First, this approach is biologically plausible, as gastro-oesophageal cancers exhibit a spectrum of sensitivity to this regimen, with some patients achieving a pCR to only four cycles and others experiencing early disease relapse despite the full eight cycles of chemotherapy. Tailoring adjuvant FLOT therapy to chemo-sensitivity may therefore avoid overtreatment or undertreatment of patients. Second, perioperative FLOT treatment incurs substantial acute toxicities, which may adversely impact commencement and/or completion of planned adjuvant therapy, in addition to carrying a risk of toxic death. Third, adjuvant FLOT may diminish patients' performance status and confer permanent toxicities (for example peripheral neuropathy) that can limit future therapeutic options. Therefore, to maximize therapeutic efficacy and minimize harm, the present findings advocate using pathological TRG to tailor adjuvant FLOT therapy.

This study can be applied in several ways. First, using contemporary real-world data stratified by TRG, patients' prognoses were modelled and the therapeutic efficacy of adjuvant FLOT was estimated. This can inform patient counselling in the postoperative interval. Second, for FLOT-refractory disease, the present data question the benefit of postoperative FLOT, particularly in patients who are borderline for adjuvant therapy. Third, for complete responders, the data suggest that neoadjuvant FLOT and surgery achieves a cure in

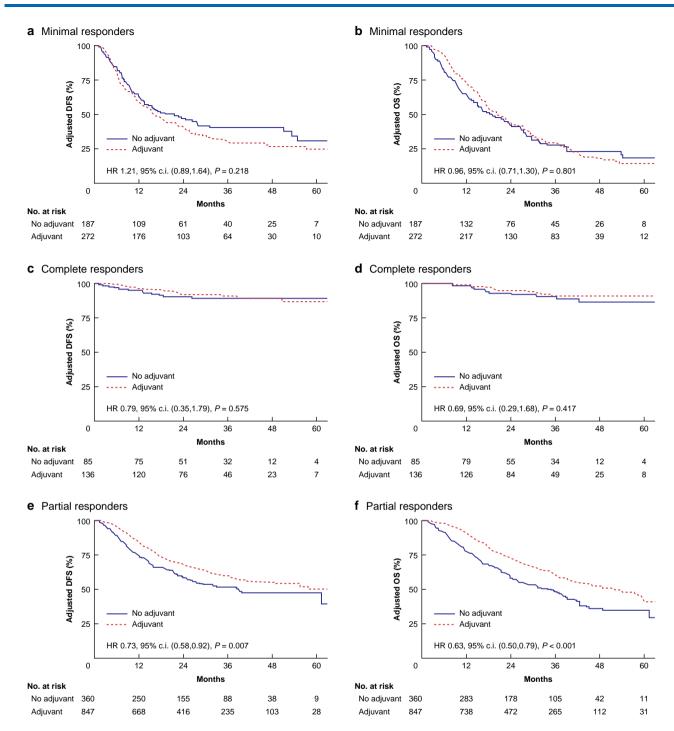


Fig. 2 Adjusted DFS and OS

a and **b** For the minimally responsive cohort. **c** and **d** For the completely responsive cohort. **e** and **f** For the partially responsive cohort. Survival curves adjusted using multivariable Cox regression analysis based on significantly different variables found in Table 1 (for **a** and **b**), Table 2 (for **c** and **d**), and Table 3 (for **e** and **f**). DFS, disease-free survival; OS, overall survival.

80% of patients and that adjuvant FLOT may not confer additional therapeutic benefit. However, it should be acknowledged that the power calculation has not allowed for a smaller but true survival advantage to be detected in both response subgroups. Therefore, in fit patients, it would be reasonable to deliver adjuvant therapy to further minimize disease recurrence. In contrast, for patients with borderline fitness, the findings of the present study support a nuanced discussion to withhold adjuvant treatment. Finally, for tumours that partially respond to neoadjuvant FLOT, this study strongly advocates pursuing

adjuvant FLOT due to the significant DFS and OS benefit, particularly for patients with poor prognostic pathological features, HER2 negativity, and proficient mismatch repair disease.

To the authors' knowledge, this is the first study to examine the role of adjuvant chemotherapy, stratified by TRG, in the FLOT era. Until now, three studies have explored the benefit of further adjuvant treatment, utilizing older regimens of perioperative chemotherapy 11–13. Two of these were single-institution studies, limited by insufficient power, heterogeneous patient populations and treatment regimens, inconsistent disease

Table 2 Patient, tumour, treatment, and perioperative characteristics for the completely responsive cohort

Characteristics	Adjuvant FLOT $(n = 136)$	No adjuvant treatment ($n = 85$)	P
Demographics			
Age (years), mean(s.d.)	62.5(10.7)	65.4(8.8)	0.036*
Sex	,	()	0.269
Male	97 (71.3)	67 (78.8)	
Female	39 (28.7)	18 (21.2)	
BMI (kg/m²), mean(s.d.)	27.3(4.7)	26.6(4.8)	0.275
Charlson co-morbidity index		()	0.081
Index score, median (i.q.r.)	2 (1–3)	3 (2–3)	
Predicted 10-year survival (%), mean(s.d.)	78.6(24.7)	74.1(26.2)	
Smoking status at time of surgery	7 0.0(2 1.7)	, 111(20.2)	0.945
Active	15 (11.0)	8 (9.4)	0.515
Former	55 (40.5)	36 (42.4)	
Never	49 (36.0)	32 (37.6)	
Unknown	17 (12.5)	9 (10.6)	
ASA grade at time of surgery, median (i.q.r.)	II (II–III)	III (II–III)	0.016*
			0.010
ECOG status at time of surgery, median (i.q.r.)	0 (0–1)	0 (0–1)	0.427
Neoadjuvant treatment	122 (00.4)	(7 (70 0)	0.010
Completed four cycles of FLOT	123 (90.4)	67 (78.8)	0.018*
FLOT cycles completed (n), median (i.q.r.)	4 (4–4)	4 (4–4)	0.104
Clinical tumour features			0.560
Histological diagnosis	()	()	0.560
Adenocarcinoma	135 (99.3)	83 (97.6)	
Adenocarcinoma with squamous differentiation	1 (0.7)	2 (2.4)	
cT category			0.273
cT1	17 (12.5)	5 (5.9)	
cT2–3	106 (77.9)	73 (85.9)	
cT4	13 (9.6)	7 (8.2)	
cN+ status	64 (47.1)	43 (50.6)	0.679
Anatomical location of tumour			0.019*
Distal oesophageal	20 (14.7)	26 (30.5)	
Gastro-oesophageal junction	69 (50.7)	36 (42.4)	
Stomach	47 (34.6)	23 (27.1)	
Surgery and perioperative details	, ,	,	
Surgical approach			0.272
Open	63 (46.3)	46 (54.1)	
Minimally invasive	73 (̇̀53.7)́	39 (45.9)	
Type of resection	(, , ,	(/	0.848
Oesophagectomy	84 (61.8)	56 (65.9)	
Total gastrectomy	24 (17.6)	14 (16.5)	
Subtotal gastrectomy	28 (20.6)	15 (17.6)	
Duration of surgery (min), mean(s.d.)	408.1(126.7)	660.0(379.4)	0.126
Surgical complications	100.1(120.7)	000.0(37 3.1)	<0.001*
None	67 (49.3)	28 (32.9)	Q0.001
Minor (Clavien–Dindo grades I–II)	46 (33.8)	20 (32.3)	
	,	,	
Major (Clavien-Dindo grades III-IV)	23 (16.9)	36 (42.4)	0.895
Total nodal harvest (n), median (i.q.r.)	27 (20–35)	26 (20–39)	0.695
Recurrence details	1 (0 1)	1 /1 0)	0.176
ECOG status at recurrence, median (i.q.r.)	1 (0-1)	1 (1–2)	0.176
First-line treatment, <i>n</i> of <i>n</i> (%)	13 of 17 (76.5)	6/12 (50.0)	0.140
Second-line treatment, n of n (%)	5 of 17 (29.4)	3 of 12 (25.0)	0.794
Third-line treatment, n of n (%)	3 of 17 (17.6)	2 of 12 (16.7)	1.000

Values are n (%) unless otherwise indicated. *Statistically significant. FLOT, 5-fluorouracil, leucovorin, oxaliplatin, and docetaxel; i.q.r., interquartile range; ECOG, Eastern Cooperative Oncology Group.

staging, the absence of DFS data, and they lacked statistical adjustments for confounders^{9,10}. The present findings are consistent with those reported by Deng et al.¹³, who utilized the US National Cancer Database to identify gastric cancer patients treated with perioperative chemotherapy before the FLOT era. In this independent patient cohort, Deng et al.¹³ found that adjuvant chemotherapy was significantly associated with increased OS in patients with chemo-sensitive disease (comparable to partial responders in the present study), but not in patients with refractory disease (comparable to minimal responders in the present study) or those who achieved a pCR.

The findings of the present study are particularly relevant considering the recently reported ESOPEC trial^{6,14,15}, which demonstrated superiority of perioperative FLOT over

neoadjuvant chemoradiation for gastro-oesophageal adenocarcinomas. Moreover, as multiple perioperative chemo-immunotherapy trials have not reached or achieved their survival endpoints 16-18, the FLOT regimen remains the current standard of care. With improvements in predictive biomarkers for immunotherapy, and a potential shift to delivering neoadjuvant immunotherapy, we anticipate that a subset of adenocarcinomas may respond to checkpoint inhibitors in combination with chemotherapy; however, utilizing TRG to guide benefit from adjuvant FLOT will still be useful to personalize the chemotherapy component of the regimen.

Importantly, the present study highlights an area of unmet need for patients with FLOT-refractory disease, as this group has the worst prognosis amongst the three tumour-response

Table 3 Patient, tumour, treatment, and perioperative characteristics for the partially responsive cohort

Characteristics	Adjuvant FLOT (n = 847)	No adjuvant treatment ($n = 360$)	P
Demographics			
Age (years), mean(s.d.) Sex	61.7(10.5)	66.1(9.7)	<0.001* 0.824
Male	650 (76.7)	274 (76.1)	0.024
Female	197 (23.3)	86 (23.9)	
BMI (kg/m²), mean(s.d.)	26.8(4.9)	27.3(5.3)	0.101
Charlson co-morbidity index Index score, median (i.q.r.)	2 (1–3)	3 (2–4)	<0.001*
Predicted 10-year survival (%), mean(s.d.)	79.9(22.0)	72.1(25.0)	
Smoking status at time of surgery	, ,	,	0.729
Active	122 (14.5)	56 (15.6)	
Former Never	339 (40.0) 274 (32.3)	147 (40.8) 91 (25.3)	
Unknown	112 (13.2)	66 (18.3)	
ASA grade at time of surgery, median (i.q.r.)	II (II–IIÍ)	III (II–IIÍ)	<0.001*
ECOG status at time of surgery, median (i.q.r.)	0 (0–1)	0 (0-1)	0.006*
Neoadjuvant treatment Completed four cycles of FLOT	765 (90.3)	245 (68 1)	<0.001*
FLOT cycles completed (n), median (iq.r.)	4 (4–4)	245 (68.1) 4 (4–4)	<0.001
Clinical tumour features	- (/	- ()	
cT category			0.151
cT1 cT2–3	30 (3.6)	9 (2.5)	
cT4	682 (80.5) 135 (15.9)	307 (85.3) 44 (12.2)	
cN+ status	430 (50.8)	197 (54.7)	0.232
Anatomical location of tumour	, ,		<0.001*
Distal oesophageal	95 (11.2)	59 (16.4)	
Gastro-oesophageal junction Stomach	356 (42.0)	178 (49.4)	
Surgery and perioperative details	396 (46.8)	123 (34.2)	
Surgical approach			0.567
Open	495 (58.4)	204 (56.6)	
Minimally invasive	352 (41.6)	156 (43.4)	0.004*
Type of resection Oesophagectomy	369 (43.6)	207 (57.5)	<0.001*
Total gastrectomy	276 (32.6)	92 (25.6)	
Subtotal gastrectomy	202 (23.8)	61 (16.9)	
Duration of surgery (min), mean(s.d.)	365.2(118.7)	357.5(123.8)	0.371
Surgical complications	461 (54.4)	111 (20.0)	<0.001*
None Minor (Clavien–Dindo grades I–II)	461 (54.4) 253 (29.9)	111 (30.8) 117 (32.5)	
Major (Clavien-Dindo grades III-IV)	133 (15.7)	132 (36.7)	
Tumour histology	,	,	
Histological diagnosis	0.40 (00.0)	050 (00 0)	0.165
Adenocarcinoma Adenocarcinoma with squamous differentiation	840 (99.2) 5 (0.6)	359 (99.9) 1 (0.1)	
Undifferentiated carcinoma	2 (0.2)	0 (0.1)	
Lauren classification	(3.4.)	((, , ,)	0.200
Intestinal	272 (32.1)	110 (30.6)	
Diffuse Mixed	168 (19.8)	57 (15.8)	
Indeterminate	64 (7.6) 343 (40.5)	24 (6.6) 169 (47.0)	
Tumour grade	313 (10.3)	103 (17.0)	0.111
Well differentiated	80 (9.4)	26 (7.2)	
Moderately differentiated	228 (26.9)	94 (26.2)	
Poorly differentiated Undifferentiated	391 (46.2) 4 (0.5)	155 (43.0) 2 (0.6)	
Indeterminate	144 (17.0)	83 (23.0)	
Lymphovascular invasion	334 (39.4)	131 (36.4)	0.333
Perineural invasion	271 (32.0)	108 (30.0)	0.588
Resection margin	769 (00 6)	214 (07.2)	0.051
R0 R1	768 (90.6) 76 (9.0)	314 (87.2) 38 (10.6)	
R2	3 (0.4)	8 (2.2)	
ypT category		- (- 7	0.379
урТ0	4 (0.5)	2 (0.6)	
ypT1a	56 (6.6)	25 (6.9)	
ypT1b ypT2	113 (13.3) 175 (20.6)	45 (12.5) 64 (17.8)	
ypT3	398 (47.0)	170 (47.2)	
ypT4a	92 (10.9)	44 (12.2)	

Table 3 (continued)

Characteristics	Adjuvant FLOT $(n = 847)$	No adjuvant treatment ($n = 360$)	P
ypT4b	9 (1.1)	10 (2.8)	
ypN category	, ,	, ,	0.321
ypN0	401 (47.4)	179 (49.7)	
ypN1	210 (24.8)	60 (16.7)	
ypN2	135 (15.9)	66 (18.3)	
ypN3	101 (11.9)	55 (15.3)	
Total nodal harvest (n), median (i.q.r.)	30 (21–41)	29 (22–40)	0.714
Recurrence details	,	,	
ECOG status at recurrence, median (i.q.r.)	1 (0-2)	1 (1–2)	0.001*
First-line treatment, n of n (%)	146 of 249 (58.6)	66 of 138 (47.8)	0.041*
Second-line treatment, n of n' (%)	35 of 249 (14.1)	18 of 138 (13.0)	0.756
Third-line treatment, n of n (%)	14 of 249 (5.6)	5 of 138 (3.6)	0.468

Values are n (%) unless otherwise indicated. *Statistically significant. FLOT, 5-fluorouracil, leucovorin, oxaliplatin, and docetaxel; i.q.r., interquartile range; ECOG, Eastern Cooperative Oncology Group.

cohorts (Fig. S10), with no alternative adjuvant standard of care. The recently reported VESTIGE trial 18,19, which examined a cohort of patients with gastro-oesophageal cancers at high risk of recurrence (ypN1-3 and/or R1) after neoadjuvant FLOT and surgery, compared adjuvant immunotherapy (nivolumab plus ipilimumab) with FLOT chemotherapy. Adjuvant immunotherapy was found to be inferior to adjuvant FLOT therapy. It needs to be emphasized that the VESTIGE trial did not stratify patients according to TRG. Consistent with the present study, one would expect that a significant proportion of the VESTIGE study population were partial responders to neoadjuvant FLOT (63% of the partial responders in the present study were ypN1-3 and/or R1) and therefore benefited from adjuvant FLOT.

Several limitations regarding this study should be acknowledged. As this is a retrospective analysis, there may be factors that influenced the decision to administer adjuvant FLOT that were not captured or adjusted for (for example postoperative ECOG status) in the analysis. However, to minimize the impact of bias, stringent data-quality measures were applied, the findings were validated using three statistical approaches, and eligibility criteria were refined to ensure a relatively homogeneous yet internationally relevant patient population. In this study, real-world data were used, powered to detect differences in survival for each pathological-response cohort, to inform current practice. Whilst a randomized trial would provide a higher level of evidence, the duration and resources required to achieve sufficient power within each response subgroup would render such a study impractical to run, with findings that may no longer be informative to clinical practice. Due to regulatory, economical, logistical, and resourcing reasons, it was not possible to undertake central review of TRG. However, it is recognized that each TRG system carries variable inter-observer agreement in grading pathological response^{20–24}. To address this, a sensitivity analysis of five-tier only (Mandard) and four-tier only (Becker, AJCC, College of American Pathologists, and Modified Ryan—as they have comparable tiered definitions) TRG systems was performed (Fig. S8) to validate the primary analysis. Multimodal assessment of tumour response to neoadjuvant FLOT was not evaluated. This is because PET is not the standard of care for restaging of gastro-oesophageal cancers at most institutions. Finally, pathological response within resected lymph nodes was not examined²⁵, as this aspect is not routinely practiced or standardly reported.

In summary, this study has demonstrated that pathological response to neoadjuvant FLOT correlates with the efficacy of adjuvant FLOT. These findings suggest that pathological tumour response to neoadjuvant FLOT may guide the use of adjuvant FLOT and help inform future studies to personalize postoperative therapy.

Collaborators

David S. Liu, Margaret M. Lee, Katheryn Hall, David I. Watson, Lorenzo Ferri, Jimmy So, Claire L. Donohoe, Michael Michael, Niall C. Tebbutt, Darren J. Wong, Cuong P. Duong, Tim Bright, Ahmad Aly, Sonia Gill, Chao Cheng, Su Kah Goh, Matthew Read, James Tan, Sean Stevens, Enoch Wong, Geraldine Ooi, Yick Ho Lam, Eunice Lee, David Williams, Louise Jackett, Kevin Chan, Garett Smith, David L. Chan, Neil Merrett, Sivakumar Gananadha, Harsh Kanhere, Lauren Kennedy, Mark Smithers, Janine Thomas, Michael Bozin, Lynn Chong, Krinal Mori, Mary-Ann Johnson, Sarah A. Martin, Val Usatoff, Rod Jacobs, Yahya Al-Habbal, Chon Hann Liew, Fredrick Huynh, Robert Bohmer, Girish Pande, Jurstine Daruwalla, Mo Ballal, Deanna Lee, Rukshan Ranjan, Andrew D. MacCormick, James Wilkins, Sharon Pattison, Nicholas Evennett, James Wilkins, Jason Robertson, Mark Pang, Alexandra Gordon, Simon Bann, Yu Kai Lim, Inian Samarasam, Ramesh Gurunathan, Jonathan Yeung, Frances Allison, Aya Siblini, Ewen A Griffiths, Alexander Phillips, Pooja Prasad, Sheraz Markar, Swathikan Chidambaram, David Chan, Thomas Murphy, John Reynolds, Magnus Nilsson, Fredrik Klevebro, Guillaume Piessen, Justine Lerooy, Bas Wijnhoven, Charlène van der Zijden, Richard van Hillegersberg, Lianne Triemstra, Jelle Ruurda, Mark Ivo van Berge Henegouwen, Suzanne Sarah Gisbertz, Pietro Maria Lombardi, Aleksandra Edmondson, Joe Q. Wei, Aldenb Lorenzo, Sam Alhayo, Aaditya Narendra, Aadil Rahim, Rocita Ho, Jeremy Granger, Steven Tran, Michalis Koullouros, Alain Nguyen, Christina McVeay, Siang Wei Gan, Eve Hopping, Iain Thomson, Andrew Barbour, David Gotley, Adam Frankel, Riteshkumar Patel, Shaun Jin Hui Chew, Kevin Lah, Sonia Gill, Stephen A. Barnett, Vijayaragavan Muralidharan, Samantha Phillips, Wael Jamel, Bung-Kook Ko, Shantanu Joglekar, Ashray Rajagopalan, Joseph Jaya, Yat Cheung Chung, Saania Peeroo, Marek Bak, Jonathan Tiong, Zhei Zhou, Amy Crowe, Ryan Newbold, Bethanie Trainor, Mei Lynn Pac Soo, Vaibhavee Khandelwal, Nicholas Eikelboom, Kyungchul Kim, Emily Moran, Joshua Hammerschlag, Brendan Desmond, Joel D'Souza, Jacky Lu, Rachel McLay-Barnes, Alexandra Gower, Jenny Choi, Yu Kai Lim, Douglas Wood, Kate Whytock, Suraj Surendran, Negine Paul, Feroz Khan H, Daryl K.A. Chia, Eugene KF. Leong, Tvisha Ijner, Yi-Tzu Linda Lin, Mei Sien Liew, Helen Jaretzke, Niall

Dempster, Kunal Bhanot, Areeb Mian, Sotiris Mastoridis, Ben Gibbons, Sam Owen-Smith, James Walmsley, Mohammed Al Azzawi, Evin Doyle, Yasuhiro Okamura, Kammy Keywani, Giovanni Ferrari, Monica Gualtierotti, Paolo De Martini, Frida Bushati.

Funding

This work was supported by the Foundation for Surgery, the Royal Australasian College of Surgeons, the Paul Mackay Bolton Cancer Research Fellowship, the Eastern Health Research Foundation, and the Peter MacCallum Cancer Centre Discovery Partner Fellowship. The funders of this study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Disclosure

The authors declare no conflict of interest.

Supplementary material

Supplementary material is available at BJS online.

Data availability

The data dictionary, study protocol, and statistical analysis plan will be available online with the publication of this manuscript on the journal's website. Individual deidentified participant data will only be shared after approval of a proposal by all study investigators, the clinical research sponsorship committee, the research governance office, and the human research ethics committee.

References

- Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 2006;355:11-20
- Al-Batran SE, Homann N, Pauligk C, Goetze TO, Meiler J, Kasper S et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet 2019;393:1948-1957
- 3. Ychou M, Boige V, Pignon JP, Conroy T, Bouché O, Lebreton G et al. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: an FNCLCC and FFCD multicenter phase III trial. J Clin Oncol 2011; 29:1715-1721
- 4. Lordick F, Carneiro F, Cascinu S, Fleitas T, Haustermans K, Piessen G et al. Gastric cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol 2022;33: 1005-1020
- Obermannová R, Alsina M, Cervantes A, Leong T, Lordick F, Nilsson M et al. Oesophageal cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol 2022;33:992-1004
- Hoeppner J, Brunner T, Schmoor C, Bronsert P, Kulemann B, Claus R et al. Perioperative chemotherapy or preoperative

- chemoradiotherapy in esophageal cancer. N Engl J Med 2025; **392**:323-335
- Geerts JFM, van der Zijden CJ, van der Sluis PC, Spaander MCW, Nieuwenhuijzen GAP, Rosman C et al. Perioperative chemotherapy for gastro-esophageal or cancer: anthracyclin triplets versus FLOT. Cancers (Basel) 2024; **16**·1291
- Al-Batran SE, Hofheinz RD, Pauligk C, Kopp HG, Haag GM, Luley KB et al. Histopathological regression after neoadjuvant docetaxel, oxaliplatin, fluorouracil, and leucovorin versus epirubicin, cisplatin, and fluorouracil or capecitabine in patients with resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4-AIO): results from the phase 2 part of a multicentre, open-label, randomised phase 2/3 trial. Lancet Oncol 2016;17:1697-1708
- 9. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK et al. The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J Clin 2017;67:93-99
- 10. Bang YJ, Kim YW, Yang HK, Chung HC, Park YK, Lee KH et al. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial. Lancet 2012;379:315-321
- 11. Glatz T, Bronsert P, Schäfer M, Kulemann B, Marjanovic G, Sick O et al. Perioperative platin-based chemotherapy for locally advanced esophagogastric adenocarcinoma: postoperative chemotherapy has a substantial impact on outcome. Eur J Surg Oncol 2015;41:1300-1307
- 12. Saunders JH, Bowman CR, Reece-Smith AM, Pang V, Dorrington MS, Mumtaz E et al. The role of adjuvant platinum-based chemotherapy in esophagogastric cancer patients who received neoadjuvant chemotherapy prior to definitive surgery. J Surg Oncol 2017;115:821-829
- 13. Deng L, Groman A, Jiang C, Perimbeti S, Gabriel E, Kukar M et al. Association of preoperative chemosensitivity postoperative survival in patients with resected gastric adenocarcinoma. JAMA Netw Open 2021;4:e2135340
- 14. Hoeppner J, Lordick F, Brunner T, Glatz T, Bronsert P, Röthling N et al. ESOPEC: prospective randomized controlled multicenter phase III trial comparing perioperative chemotherapy (FLOT protocol) to neoadjuvant chemoradiation (CROSS protocol) in patients with adenocarcinoma of the esophagus (NCT02509286). BMC Cancer 2016;16:503
- 15. Hoeppner J, Brunner T, Lordick F, Schmoor C, Kulemann B, Neumann UP et al. Prospective randomized multicenter phase III trial comparing perioperative chemotherapy (FLOT protocol) to neoadjuvant chemoradiation (CROSS protocol) in patients with adenocarcinoma of the esophagus (ESOPEC trial). J Clin Oncol 2024; 42(Suppl): LBA1
- 16. Kang YK, Terashima M, Kim YW, Boku N, Chung HC, Chen JS et al. Adjuvant nivolumab plus chemotherapy versus placebo plus chemotherapy for stage III gastric or gastro-oesophageal junction cancer after gastrectomy with D2 or more extensive lymph-node dissection (ATTRACTION-5): a randomised, multicentre, double-blind, placebo-controlled, phase 3 trial. Lancet Gastroenterol Hepatol 2024;9:705-717
- 17. Shitara K, Rha SY, Wyrwicz LS, Oshima T, Karaseva N, Osipov M et al. Neoadjuvant and adjuvant pembrolizumab plus chemotherapy in locally advanced gastric gastro-oesophageal cancer (KEYNOTE-585): an interim analysis of the multicentre, double-blind, randomised phase 3 study. Lancet Oncol 2024;25:212-224

- 18. Smyth E, Knödler M, Giraut A, Mauer M, Nilsson M, Van Grieken N et al. VESTIGE: adjuvant immunotherapy in patients with resected esophageal, gastroesophageal junction and gastric cancer following preoperative chemotherapy with high risk for recurrence (N+ and/or R1): an open label randomized controlled phase-2-study. Front Oncol 2019;9:1320
- 19. Lordick F, Mauer ME, Stocker G, Cella CA, Ben-Aharon I, Piessen G et al. Adjuvant immunotherapy in patients with resected gastric and oesophagogastric junction cancer following preoperative chemotherapy with high risk for recurrence (ypN+ and/or R1): European Organisation of Research and Treatment of Cancer (EORTC) 1707 VESTIGE study. Ann Oncol 2025;36:197–207
- Pai RK, Pai RK. Pathologic assessment of gastrointestinal tract and pancreatic carcinoma after neoadjuvant therapy. Mod Pathol 2018;31:4–23
- 21. Tsekrekos A, Vieth M, Ndegwa N, Bateman A, Flejou JF, Grabsch HI et al. Interobserver agreement of a gastric adenocarcinoma tumor regression grading system that incorporates assessment of lymph nodes. Hum Pathol 2021;116:94–101

- 22. Karamitopoulou E, Thies S, Zlobec I, Ott K, Feith M, Slotta-Huspenina J et al. Assessment of tumor regression of esophageal adenocarcinomas after neoadjuvant chemotherapy: comparison of 2 commonly used scoring approaches. Am J Surg Pathol 2014;38:1551–1556
- Lütken C, Sheikh K, Willemoe GL, Achiam MP, Hasselby JP. Clinical assessment of tumor regression grade systems in gastroesophageal adenocarcinoma following neoadjuvant chemotherapy. Pathol Res Pract 2021;224:153538
- 24. Anannamcharoen S, Boonya-Ussadorn C, Satayasoontorn K, Nimmanon T. Comparison of five pathological tumor regression grading systems for rectal cancer following chemoradiation: correlation coefficient and intra-rater reliability. Asian Pac J Cancer Prev 2025;26:199–205
- 25. Hagi T, Makino T, Yamasaki M, Yamashita K, Tanaka K, Saito T et al. Pathological regression of lymph nodes better predicts long-term survival in esophageal cancer patients undergoing neoadjuvant chemotherapy followed by surgery. Ann Surg 2022;275:1121–1129